THE AFRICA LOW EMISSIONS DEVELOPMENT STRATEGIES (AFRICA-LEDS) PROJECT

Africa LEDS project: achievements & next steps – component 2

Presentation for Côte d'Ivoire

BY: Dr. Alain Serges KOUADIO

Component 2 Objectives

- Establish modeling and analytical capacity to inform the decision making process for NDC implementation
- Develop an integrated modeling framework to assess simultaneously GHG emissions and socio-economic impacts

Test the integrated modelling framework for the impact assessment of the demonstration project (Component 1)

Linkage with the NDC

- 28% Emission reduction compared to BAU by 2030
- Cost of Implementation: 17.65 billion USD
- ♦ GHG Coverage: CO₂, CH₄, N₂O

Sectors: Agriculture, Energy, Waste, Forestry & Other Land Use

Assessed Impacts (integrated modelling system capability)

- Direct (micro-economic) Impacts:
 - Climate Impacts (GHG emissions reductions)
 - Net societal costs/savings
- Indirect (socio-economic/macroeconomic) impacts:
 - Net job generation potential
 - Gross regional product

Choice of models

- Models were chosen by the modelling team with backstopping by technical experts (Center for Climate Strategies) based on:
 - In country, already established capability and expertise
 - Model availability (free of charge, open source) to ensure replicability and scaling up for NDC implementation

Integrated Modeling System

- Ex-ACT (Ex-Ante Carbon Tool): for assessing <u>non-energy LEDS</u> <u>actions</u>
- LEAP-IBC (Long-Range Energy Alternatives Planning Integrated Benefits Calculator): for building an <u>energy systems</u> <u>model</u>
- CCS Toolkit (Center for Climate Strategies (CCS) MS-Excel based support tools) for <u>macroeconomic assessment</u>, filling LEAP and EX-ACT gaps, training, and quality assurance

UNEP

Background of Demonstration Project

- Rice is the most consumed cereal grain in Côte d'Ivoire
- Domestic production
 - Current: ~2.0 million tons of milled rice
 - By-product: ~500,000 tons of rice husk
 - Expected Growth by 2030: significant (greater than >50%) with a goal of self-sufficiency
- Common cultivation practices
 - Continuously-flooded rice system
 - Synthetic nitrogen fertilization
 - Burning of crop residue (rice straw) in the field
 - Low yield varieties and planting techniques

Background of Demonstration Project

- Rice husk is a by-product of rice milling
- Rice husk makes up ~20% by weight of paddy rice
- At small rural mills (less than <2 tonnes/day capacity), it is a low value by-product (e.g. used as animal bedding)

Background of Demonstration Project

Like elsewhere in sub-Saharan Africa, unsustainable removal of wood from the forest for use as cooking fuel is a key driver of deforestation and forest degradation

Firewood collection in Kenya. Source -Penn State University https://news.psu.edu/story/507274/2018/02/26/r esearch/wood-fuels-key-easing-food-insecuritysituation-sub-saharan-africa

Achievement

Côte d'Ivoire Team applied the integrated modelling system to the assessment of 3 scenarios within the rice value chain:

- 1. Rice husk briquette production for consumption as a local cooking fuel
- 2. Smart practices for irrigated rice cultivation
- 3. Combination of 1 and 2 scenarios (overlap and integration)

Scenario 1. Rice Husk Briquetting and Use as a Cooking Fuel

Key Interventions:

- a) Obtain necessary equipment:
 - Rice husk carbonizer
 - Briquette press
 - Briquette dryer
- b) Obtain other process inputs and produce biobriquettes:
 - Binding agents powdered clay and starch
 - Water
 - Electrical power for the press
- c) Market and sell the bio-briquettes locally to offset the use of kerosene and charcoal cooking fuels

Scenario 1. Rice Husk Briquetting and Use as a Cooking Fuel

Citations pour les images: <u>http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products/rice-husk</u> <u>http://www.briquette-machine.com/uploads/allimg/rice-husk-briquette-press.jpg</u> <u>http://stoves.bioenergylists.org/files/picture_iiko_bomba_003b.jpg</u>. <u>https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/Brennreisig.JPG/1200px-Brennreisig.JPG.</u>

EX-ACT: Forest carbon LEAP-IBC: Energy and emissions impacts CCS Micro-Analysis Tool: societal costs/savings and quality assurance CCS Macro-Indicators Tool: ratings potential for GRP growth tied to six separate macroeconomic indicators related to direct implementation costs

- LEAP Screenshot: Local fuel use displacement with bio-briquettes (national scale)
- In LEAP, to include fuel (briquettes) in energy demand, it must be produced or imported. So, there is an interdependence between household briquette consumption and briquette production.
- The simulation of the production was carried out after modification of the LEAP tree, since this activity did not exist in basic structure. In this scenario, the proportions of use of the different fuels are defined, and serve as a basis for the projection.
- The use of rice husk briquette is a powerful tool for reducing greenhouse gas emissions as shown in the figure below. These emissions are reduced by 63k eq-CO2 by 2050 for households. For all sectors of activity and all the processes that lead to its use, the reduction is 2300k eq-CO2 and those for the whole

CCS Micro-Analysis Tool screenshot: pilot project direct costs

Coûts sociaux nets

88	Net Societal Co	osts												
89	C	Conditions habituelles: o BAU Direct Costs	oûts directs			Scénario du pro Pilot Program Scena	ogramme pilote: co rio (PS): Direct Costs	oûts directs						
90		Coûts de gestion de la balle de riz	Autre coût	Autre coût	Valeur du produit en balle de riz		Coûts d'équipement de production de briquettes	Coûts d'équipement annualisés	Production de briquettes: travail	Autres intrants de production	Coûts d'électricité	Bénéfice de l'opérateur d'une rizière sur les ventes de briquettes	Coût évité du kérosène	Coût évité du charbon de bois
91	An _	Rice Husk Management Cost	Other Cost	Other Cost	Value of Rice Husk Product	E	Briquette Production Equipment Costs	Annualized Equipment Costs	Briquette Production Labor	Other Production Input Costs	Electricity Cost	Rice Mill Operator Profit on Briquette Sales	Avoided Cost of Kerosene	Avoided Cost of Charcoal
92	Year	XOF	XOF	XOF	XOF	Year	XOF	XOF	XOF	XOF	XOF	XOF	XOF	XOF
93	2019	XOF 0	XOF 0	XOF 0	(XOF 2,700,000)	2019	XOF 3,814,800	XOF 418,845	XOF 33,120	XOF 414,000	XOF 163,033	XOF 360,149	(XOF 6,259,680)	(XOF 274,569)
93 94	2019 2020	XOF 0 XOF 0	XOF 0 XOF 0	XOF 0 XOF 0	(XOF 2,700,000) (XOF 2,754,000)	2019	XOF 3,814,800	XOF 418,845 XOF 418,845	XOF 33,120 XOF 33,782	XOF 414,000 XOF 422,280	XOF 163,033 XOF 166,294	XOF 360,149 XOF 364,420	(XOF 6,259,680) (XOF 6,384,874)	(XOF 274,569) (XOF 280,061)
93 94 99	2019 2020 2025	XOF0 XOF0 XOF0	XOF 0 XOF 0 XOF 0	XOF 0 XOF 0 XOF 0	(XDF 2,700,000 (XDF 2,754,000 (XDF 3,040,639	2019 2020 2025	XDF 3,814,800	XOF 418,845 XOF 418,845 XOF 418,845	XOF 33,120 XOF 33,782 XOF 37,298	XOF 414,000 XOF 422,280 XOF 466,231	XOF 163,033 XOF 166,294 XOF 183,602	XOF 360,149 XOF 364,420 XOF 387,092	(XOF 6,259,680) (XOF 6,384,874) (XOF 7,049,416)	(XOF 274,569) (XOF 280,061) (XOF 309,209)
93 94 99 104	2019 2020 2025 2030	XOF 0 XOF 0 XOF 0 XOF 0	XOF 0 XOF 0 XOF 0 XOF 0 XOF 0	XOF 0 XOF 0 XOF 0 XOF 0	(XDF 2,700,000) (XDF 2,754,000) (XDF 3,040,639) (XDF 3,357,111)	2019 2020 2025 2030	XOF 3,814,800	XOF 418,845 XOF 418,845 XOF 418,845 XOF 418,845	XOF 33,120 XOF 33,782 XOF 37,298 XOF 41,181	XOF 414,000 XOF 422,280 XOF 466,231 XOF 514,757	XOF 163,033 XOF 166,294 XOF 183,602 XOF 202,711	XOF 360,149 XOF 364,420 XOF 387,092 XOF 412,123	(XOF 6,259,680) (XOF 6,384,874) (XOF 7,049,416) (XOF 7,783,125)	(XDF 274,569) (XDF 280,061) (XDF 309,209) (XDF 341,392)
93 94 99 04 09	2019 2020 2025 2030 2035	XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0	XOF0 XOF0 XOF0 XOF0 XOF0 XOF0	XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	(XDF 2,700,000 (XDF 2,754,000 (XDF 3,040,639 (XDF 3,357,111 (XDF 3,706,521	2019 2020 2025 2030 2030 2035	XOF 3,814,800 /	XOF 418,845 XOF 418,845 XOF 418,845 XOF 418,845 XOF 418,845 XOF 0	XOF 33,120 XOF 33,782 XOF 37,298 XOF 41,181 XOF 45,467	XOF 414,000 XOF 422,280 XOF 466,231 XOF 514,757 XOF 568,333	XDF 163,033 XDF 166,294 XDF 183,602 XDF 202,711 XDF 223,810	XOF 360,149 XOF 364,420 XOF 387,092 XOF 412,123 XOF 293,163	(XOF 6,259,680) (XOF 6,384,874) (XOF 7,049,416) (XOF 7,783,125) (XOF 8,593,199)	(XDF 274,569) (XDF 280,061) (XDF 309,209) (XDF 341,392) (XDF 376,925)
93 94 99 04 09 14	2019 2020 2025 2030 2035 2040	XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0	XOF0 XOF0 XOF0 XOF0 XOF0 XOF0 XOF0	XDF0 XDF0 XDF0 XDF0 XDF0 XDF0 XDF0 XDF0	(XDF 2,700,000 (XDF 2,754,000 (XDF 3,040,639 (XDF 3,357,111 (XDF 3,706,521 (XDF 4,092,299	2019 2020 2025 2030 2030 2035 2035 2040	XOF 3,814,800	XOF 418,845 XOF 418,845 XOF 418,845 XOF 418,845 XOF 0 XOF 0 XOF 0	XOF 33,120 XOF 33,782 XOF 37,298 XOF 41,181 XOF 45,467 XOF 50,199	XOF 414,000 XOF 422,280 XOF 466,231 XOF 514,757 XOF 568,333 XOF 568,333	XOF 163,033 XOF 166,294 XOF 183,602 XOF 202,711 XOF 202,711 XOF 223,810 XOF 247,104	XOF 360,149 XOF 364,420 XOF 387,092 XOF 412,123 XOF 293,163 XOF 323,676	(XDF 6,259,680) (XDF 6,384,874) (XDF 7,049,414) (XDF 7,049,415) (XDF 7,783,125) (XDF 8,593,199) (XDF 9,487,586)	(XDF 274,569) (XDF 280,661) (XDF 309,209) (XDF 309,209) (XDF 376,925) (XDF 376,925) (XDF 416,155)
93 94 99 104 109 14	2019 2020 2025 2030 2035 2040 2045	XOF0 XOF0 XOF0 XOF0 XOF0 XOF0 XOF0 XOF0	XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	XDF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0	(XDF 2,700,000 (XDF 2,754,000) (XDF 3,040,639) (XDF 3,357,111) (XDF 3,706,521) (XDF 4,052,299) (XDF 4,518,229)	2019 2020 2025 2030 2035 2035 2040 2045	XOF 3,814,800	XDF 418,845 XDF 418,845 XDF 418,845 XDF 418,845 XDF 0 XDF 0 XDF 0 XDF 0	XOF 33,120 XOF 33,782 XOF 37,298 XOF 41,181 XOF 45,467 XOF 50,199 XOF 55,424	XDF 414,000 XDF 422,280 XDF 466,231 XDF 514,757 XDF 516,333 XDF 556,333 XDF 627,486 XDF 632,795	XOF 163,033 XOF 166,294 XOF 183,602 XOF 202,711 XOF 223,810 XOF 247,104 XOF 272,823	XDF 360,149 XDF 364,420 XDF 387,092 XDF 412,123 XDF 293,163 XDF 293,163 XDF 323,676 XDF 327,364	(XDF 6,259,680) (XDF 6,384,874) (XDF 7,049,416) (XDF 7,783,125) (XDF 8,533,199) (XDF 9,487,586) (XDF 10,475,062)	(XDF 274,563) (XDF 280,061) (XDF 309,209) (XDF 341,392) (XDF 376,925) (XDF 416,155) (XDF 459,463)
93 94 99 104 109 114 19 124	2019 2020 2025 2030 2035 2040 2045 2045	XOF0 XOF0 XOF0 XOF0 XOF0 XOF0 XOF0 XOF0	XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0 XOF 0	XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	(XDF 2,760,000 (XDF 2,754,000 (XDF 3,040,639 (XDF 3,357,111 (XDF 3,706,521 (XDF 4,092,299 (XDF 4,518,229 (XDF 4,588,490)	2019 2020 2025 2035 2035 2040 2045 2040 2045	XOF 3,814,800	XDF 418.845 XDF 418.845 XDF 418.845 XDF 418.845 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	XOF 33,120 XOF 33,782 XOF 37,238 XOF 41,181 XOF 45,467 XOF 56,199 XOF 56,192	XOF 414,000 XOF 422,280 XOF 466,231 XOF 514,757 XOF 568,333 XOF 657,486 XOF 632,795 XOF 632,795	XDF 163,033 XDF 166,294 XDF 183,602 XDF 202,711 XDF 202,711 XDF 223,810 XDF 247,104 XDF 272,823 XDF 301,218	XDF 360,149 XDF 364,420 XDF 387,092 XDF 412,123 XDF 293,163 XDF 323,676 XDF 323,676 XDF 324,559	(XDF 6,259,680) (XDF 6,384,874) (XDF 7,743,125) (XDF 7,783,125) (XDF 9,487,586) (XDF 10,475,062) (XDF 10,475,062) (XDF 11,565,315)	(XCF 274,569) (XCF 280,061) (XCF 389,209) (XCF 341,392) (XCF 341,392) (XCF 341,392) (XCF 416,155) (XCF 415,469) (XCF 459,469) (XCF 507,291)
93 94 99 04 09 14 19 24 25	2019 2020 2025 2030 2035 2040 2045 2045 2050 Somme	XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	XOF 0 XOF 0	XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0 XDF 0	(XDF 2,700,000 (XDF 2,754,000) (XDF 3,040,639) (XDF 3,357,111 (XDF 3,376,527) (XDF 4,052,239) (XDF 4,518,229) (XDF 4,518,229) (XDF 4,518,229) (XDF 4,518,229)	2019 2020 2025 2030 2035 2035 2040 2045 2050 Somme	XDF 3,814,800 XDF 3,814,800	XDF 418,845 XDF 418,845 XDF 418,845 XDF 418,845 XDF 0 XDF 0 XDF 0 XDF 0 XDF 6,282,668	XOF 33,120 XOF 33,782 XOF 37,296 XOF 41,181 XOF 45,467 XOF 55,424 XOF 55,424 XOF 51,92 XOF 1,164,799	XOF 414,000 XOF 422,280 XOF 466,231 XOF 514,757 XOF 568,333 XOF 627,486 XOF 627,795 XOF 764,902 XOF 18,309,990	XOF 163,033 XOF 166,294 XOF 183,602 XOF 202,711 XOF 223,810 XOF 247,104 XOF 272,823 XOF 301,218 XOF 7,210,474	XDF 360,149 XDF 364,420 XDF 387,082 XDF 412,123 XDF 233,163 XDF 233,676 XDF 323,676 XDF 357,364 XDF 394,559 XDF 11,643,776	(XDF 6,259,680) (XDF 6,384,874) (XDF 7,049,416) (XDF 7,049,416) (XDF 7,783,725) (XDF 8,593,199) (XDF 9,487,566) (XDF 10,475,062) (XDF 11,565,315) (XDF 276,847,953)	(XCF 274,563) (XCF 280,061) (XCF 309,209) (XCF 341,352) (XCF 341,352) (XCF 341,352) (XCF 451,655) (XCF 459,463) (XCF 507,251) (XCF 507,251) (XCF 507,251)

27 Coûts sociétaux

128		Total des coûts du programme	Total des coûts du programme actualisés	Efficacité des coûts
129		Total Program Costs	Total Discounted Policy Costs	Cost Effectiveness
	An			2019 XOF /
130	Year	XOF	2019 XOF	tCO2e
131	2019	(XOF 2,445,102)	(XOF 2,445,102)	
132	2020	(XOF 2,505,313)	(XOF 2,338,292)	
37	2025	(XOF 2,824,919)	(XOF 1,867,354)	
42	2030	(XOF 3,177,791)	(XOF 1,487,750)	
47	2035	(XOF 4,132,829)	(XOF 1,370,364)	
152	2040	(XOF 4,562,978)	(XOF 1,071,570)	
57	2045	(XOF 5,037,896)	(XOF 837,925)	
62	2050	(XOF 5,562,244)	(XOF 655,225)	
63	Somme	[XOF 124,665,742]	(XOF 44.255.954)	(XOF 143)

Net Costs = Pilot Scenario – BAU

Net societal savings: ~ 44 million CFA

CCS Macro-Indicators Tool screenshot

Drawing from the streams of direct costs/benefits: the following indicators showed potential for local economic stimulus:

- 1. Reduction in total net societal costs (reduced business as usual costs)
- 2. Reduction in local energy costs (displacement of kerosene by bio-briquettes)
- 3. Net increase in labor intensity and local employment for the bio-briquetting operation and process inputs
- 4. Reduction in imports of electricity and fuels and improved local financial flows

The following indicators showed potential for local economic contraction:

- 5. Local energy purchasing: reduction in local fuelwood and charcoal demand
- 6. Local sector stimulation: net expected impact of local bio-briquette stimulus versus local fuelwood sourcing.

Key Interventions:

- a) Use improved seed varieties and planting methods
- b) Change irrigation scheme from continuous flooding to intermittent flooding
- c) Change from residue burning to straw removal and composting with manure
- d) Replace synthetic nitrogen fertilizers with organic fertilizer (compost)

Scenario 2: Climate Smart Rice Cultivation

	Withou	t project	With project
Water Management	Rice irrigated permanently (1)	Irrigated rice intermittently (2)	Irrigated rice intermittently (3)
Water regime before cultivation	Preseason not flooded <180 days	Preseason not flooded <180 days	Preseason not flooded <180 days
Type of amendment	Burnt rice straw	Burnt rice straw	Compost (rice straw and manure)
Area	(1): 89,5 Ha (2): 61 Ha	(1): 89,5 Ha (2): 61 Ha	(3):150,5 Ha
Cultivation period	150 days	150 days	100 days

- EX-ACT: Resource and GHG impacts for changes to crop residue management and nitrogen input
- CCS Micro-Analysis Tool: integration of direct costs and GHG impacts
- CCS Macro-Indicators Tool: potential for significant GRP impacts

EX-ACT Screenshot on GHG emissions

No	m du Projet	projet Gagno	a Zone	climatique	Tropical (Hum	ide)				Duré	e du Projet (en années)	20,00	
	Continent	Afrique	Type de s	ol dominant	Sols à argiles	1:1					Surface	totale (ha)	3 150,50	
Composante	es du projet	Flux bruts Sans Tous les GE Positif=émi	Avec S en tCO2e ssion / néga	Bilan q tif=puits	Répartition d Tous les GES CO2 Biomasse	lu blian par t 6 en tCO2eq Sol	ype (de GES	; -	N20	CH4	Résultat: Sans	s par an Avec	Bilan
Changements	s d'Usage													
	Déforestation	#########	#########	******	######## -	167 746,98			-	793,47	-	#######	48 912,65	########
	Boisement	-	-	-	-	-				-	-	-	-	-
	Autres CUT	-	-	-	-	-				-	-	-	-	-
Agriculture	A													
	Péroppo	_		-	-					-	_	-	-	
	Biz	13 227 09	7 012 96	- 621413	1				_	248.64	- 596549	661.35	350.65	- 310.71
Patûrage & b	étail	10 22 1,00	1012,00	0211,10						210,01	0 000,10	00,00	000,00	0.0,11
· · · · · · · · · ·	Patûrage	-	-	-	-	-				-	-	-	-	-
	Bétail	-	-	-						-	-	-	-	-
Dégradation (et gestion	-	-	-	-	-				-	-	-	-	-
Coastal wetla	ands	-	-	-	-	-		- 1 -		-	-	-	-	-
Intrants & Inv	estissements	20,41	175,67	155,27			-	8,45		163,71	-	1,02	8,78	7,76
rishery & Aqu	Jaculture	-	-	-				-				-	-	-
Total		#########	985 441,68	*******	######### -	167 746,98	-	8,45	-	878,40	- 5965,49	#######	49272,08	#######
Par hectare		624,72	312,79	- 311,93	- 257,01 -	53,24	-	0,00	-	0,28	- 1,89			
Par hectare e	et par an	31,24	15,64	- 15,60	- 12,85 -	2,66	-	0,00	-	0,01	- 0,09	31,24	15,64	- 15,60
C	Bilan carbo	one = -98	2 724,97	teq CO ₂		Fact	eur	d'ém	niss	ion =	15,60 CO	2		

Scenario : Baseline (LEAP)

LEAP: cote divoire_projet leds 10042019

It includes Côte d'Ivoire's 2010 energy demand (base year) for the residential sector, businesses and utilities. The results of the energy demand projection up to 2050. Before moving to the use of agricultural residue-based briquette, it is necessary to make the raw material available, so the scenario Agriculture was, elaborate. The details of the Baseline's fuel share are given in the following figure. Wood and charcoal are the most consumed fuels in households and represent 62k terajoules and 321k terajoules respectively.

LEAP: cote divoire_projet leds 10042019

The following figure shows the amount of household energy through the use of briquettes reduced compared to current practices (Baseline). It revealed a 340k terajoule reduction compared to the Baseline by 2050 if this practice is extended to the whole country.

USE OF RICE HUSK BRIQUETTE FOR REDUCING GAS EMISSIONS.

LEAP: cote divoire_projet leds 10042019

The use of rice husk briquette is a powerful tool for reducing greenhouse gas emissions as shown in the figure below. These emissions are reduced by 63k eq-CO2 by 2050 for households. For all sectors of activity and all the processes that lead to its use, the reduction is 2300k eq-CO2 and those for the whole country.

www.africaled.org

CCS Tool screenshot on costs results

	A	В	С	D	G	н		J	K	N
	Coûts so	ciaux nets								
88	Net Societa	I Costs								
89		Conditions habituelles: BAU Direct Costs	coûts directs			Scénario o Pilot Program	lu programme pilote: Scenario (PS): Direct Costs	coûts directs		
90		Coûts matériels: semences et engrais	Main d'oeuvre de plantation	Main d'oeuvre de culture et de récolte	Valeur du riz paddy		Coûts matériels: semis et engrais	Main d'oeuvre de plantation	Main d'oeuvre de culture et de récolte	Valeur du riz paddy
91	Δn -	Material costs: seeds and fertilizer	Planting Labor	Cultivation and harvesting labor	Value of Paddy Rice	Δn.	Material costs: seedlings and fertilizer	Planting Labor	Cultivation and harvesting labor	Value of Paddy Rice
92	Year	XOF	XOF	XOF	XOF	Year	XOF	XOF	XOF	XOF
93	2019	XOF 71,818,600	XOF 301,000	XOF 2,257,500	(XOF 73,745,000)	2019	XOF 49,528,026	XOF 391,300	XOF 3,762,500	(XOF 147,490,000)
94	2020	XOF 73,254,972	XOF 307,020	XOF 2,302,650	(XOF 75,219,900)	2020	XOF 50,518,587	XOF 399,126	XOF 3,837,750	(XOF 150,439,800)
99	2025	XOF 80,879,408	XOF 338,975	XOF 2,542,312	(XOF 83,048,848)	2025	XOF 55,776,602	XOF 440,667	XOF 4,237,186	(XOF 166,097,695)
104	2030	XOF 89,297,402	XOF 374,256	XOF 2,806,918	(XOF 91,692,638)	2030	XOF 61,581,876	XOF 486,532	XOF 4,678,196	(XOF 183,385,277)
109	2035	XOF 98,591,547	XOF 413,208	XOF 3,099,064	(XOF 101,236,082)	2035	XOF 67,991,367	XOF 537,171	XOF 5,165,106	(XOF 202,472,164)
114	2040	XOF 108,853,035	XOF 456,216	XOF 3,421,617	(XOF 111,772,815)	2040	XOF 75,067,963	XOF 593,080	XOF 5,702,695	(XOF 223,545,629)
119	2045	XOF 120,182,546	XOF 503,699	XOF 3,777,741	(XOF 123,406,219)	2045	XOF 82,881,097	XOF 654,809	XOF 6,296,236	(XOF 246,812,438)
124	2050	XOF 132,691,242	XOF 556,124	XOF 4,170,932	(XOF 136,250,437)	2050	XOF 91,507,428	XOF 722,962	XOF 6,951,553	(XOF 272,500,874)
125	Somme	XOF 3,176,323,348	XOF 13,312,336	XOF 99,842,519	(XOF 3,261,522,298)	Somme	XOF 2,190,477,490	XOF 17,306,037	XOF 166,404,199	(XOF 6,523,044,596)

126				
127	Coûts socié Net Direct S	taux directs nets ocietal Costs		
128		Total des coûts du programme	Total des coûts du programme actualisés	Efficacité des coûts
129	An	Total Program Costs	Total Discounted Policy Costs	Cost Effectiveness
130	Year	XOF	2019 XOF	XOF2019/tCO2e
131	2019	(XOF 94,440,274)	(XOF 94,440,274)	
132	2020	(XOF 96,329,079)	(XOF 89,907,140)	
137	2025	(XOF 106,355,087)	(XOF 70,303,821)	
142	2030	(XOF 117,424,610)	(XOF 54,974,801)	
147	2035	(XOF 129,646,258)	(XOF 42,988,116)	
152	2040	(XOF 143,139,944)	(XOF 33,615,003)	
157	2045	(XOF 158,038,065)	(XOF 26,285,600)	
162	2050	(XOF 174,486,793)	(XOF 20,554,297)	
163	Somme	IXOF 4,176,812,7761	(XOF 1.559.845.468)	(XOF 102.028)

Net Costs/Saving = Pilot Scenario – BAU

Net Social Savings: ~1.5 trillion CFA

CCS Tool screenshot on macro assessment

Drawing from the streams of direct costs/benefits: the following indicators showed strong potential for local economic stimulus:

- 1. Reduction in total net societal costs (reduced business as usual costs)
- 2. Stimulation of local sectors (composting operations, savings on imported materials (nitrogen fertilizers)
- 3. Jobs: Net increase in labor intensity and local employment for changes in cultivation (planting and cultivation, composting operations)
- 4. Reduction in imports and improved local financial flows: higher value of paddy rice from higher yields

CCS Micro-Analysis Tool Screenshot on GHG emissions & Implementation Costs (Pilot Program Scale)

4		Changement net: énergie, matériaux et émissions Energy & Emissions Change							
5			Scenario 3: Les deux pilotes						
6		Engrais azoté chimique appliqué	Paille de riz brûlée	Total des impacts de GES	Total des impacts de GES	Total des impacts de GES			
7	An	N Fertilizer Use	Rice Straw Burned	Total GHG Impacts	Total GHG Impacts	Total GHG Impacts			
8	Year	kg N	kg	tCO₂e	tCO₂e	tCO₂e			
9	2019	(14,147)	(312,127)	(716)	(19,293)	(20,009)			
0	2020	(14,147)	(312,127)	(716)	(19,293)	(20,009)			
5	2025	(14,147)	(312,127)	(716)	(19,293)	(20,009)			
0	2030	(14,147)	(312,127)	(716)	(19,293)	(20,009)			
5	2035	(14,147)	(312,127)	(335)	(19,293)	(19,628)			
0	2040	(14,147)	(312,127)	(335)	(19,293)	(19,628)			
)5	2045	(14,147)	(312,127)	(335)	(19,293)	(19,628)			
0	2050	(14,147)	(312,127)	(335)	(19,293)	(19,628)			
1	Somme	(452,704)	(9,988,071)	(15,288)	(617,374)	(632,663)			

153		Coûts sociétaux directs	nets		Scénario 3	Scénario 3
154		Scénario 2	Scénario 1	Scénario 1	Les deux scénarios	Les deux scénarios
155	An	Total des coûts du programme actualisés	Total des coûts du programme actualisés	Total des coûts du programme actualisés	Total des coûts du programme actualisés	Efficacité des coûts Cost Effectiveness
156	Year	XOF 2019	XOF	XOF 2019	XOF 2019	XOF 2019/tCO2e
157	2019	(XOF 94,440,274)	(XOF 8,009,049)	(XOF 8,009,049)	(XOF 102,449,322)	
158	2020	(XOF 89,907,140)	(XOF 8,183,471)	(XOF 7,637,906)	(XOF 97,545,046)	
163	2025	(XOF 70,303,821)	(XOF 9,109,322)	(XOF 6,021,528)	(XOF 76,325,349)	
168	2030	(XOF 54,974,801)	(XOF 10,131,537)	(XOF 4,743,292)	(XOF 59,718,093)	
173	2035	(XOF 42,988,116)	(XOF 11,972,180)	(XOF 3,969,736)	(XOF 46,957,852)	
178	2040	(XOF 33,615,003)	(XOF 13,218,254)	(XOF 3,104,177)	(XOF 36,719,179)	
183	2045	(XOF 26,285,600)	(XOF 14,594,021)	(XOF 2,427,343)	(XOF 28,712,943)	
188	2050	(XOF 20,554,297)	(XOF 16,112,978)	(XOF 1,898,086)	(XOF 22,452,383)	
189	Somme	(XOF 1,559,845,468)	(XOF 375,027,132)	(XOF 137,157,767)	(XOF 1,697,003,235)	(XOF 2,682)

Combined Direct Results:

- Total GHG Reductions (2019-2050): >600,000 tCO₂e
- 2. Total Societal Benefits (2019-2050): ~1.7
 - trillion 2018 CFA saved
- 3. 530 tons bio-briquettes produced
- 3. 71 hectares of forest preserved
- 4. 3,000 tons of CO₂ sequestered in forests
- 5. 453 tons of chemical nitrogen (fertilizer) avoided

CCS Macro-Indicators Tool screenshot

Production et utilisation de briquettes de balle de riz + Pratiques intelligentes de production de riz irrigué

Drawing from the streams of direct costs/benefits: the combined results from Scenarios 1 & 2 showed strongly positive potential for local economic stimulus

www.africaleds.org

Feedback to policy

Contribution of the LEDS project to the implementation of NDCs in Côte d'Ivoire

NDC priorities Sectors	NDC Strategic orientations	Actions planned in the NDCs	Contribution of component 2 of the LEDS project
Agriculture / Forestry	Consistency of national planning and rural spatial planning to develop agriculture and the forestry sector	Consistency of National Agricultural Investment Plans (NAIP) with strategies to limit deforestation (REDD + process) through a master plan for land use planning in 2030 (securing land) in consultation with each agricultural sector and the territories	 Help, through the integrated LEDS model, an assessment of the climatic and socioe conomic benefits related to the integration of these two strategies Assist in determining the best low carbon action scenarios associated with this integrated framework
	Agricultural development without extension on the remaining forest areas and less emitting GHGs	Decoupling of agricultural production and deforestation through the promotion of intensive agricultural practices with reduced impacts on the environment and agroforestry	* Assist in the determination of the best low carbon scenarios with proven benefits linked to the promotion of intensive and intelligent farming practices (especially in the rice sector)

Testimonials

"The ministry of planning as the Ministry in charge of national planning through the definition of the national development plan, the national prospective study and the national statistics, will play its full role so that each sector appropriates the results of the project LEDS in particular the sectors of energy, agriculture and industry. It is for us to capitalize not only the LEDS modeling models and tools but the integrated ones in the corpus of national governance tools".

Mr. KOYA JEAN CLAUDE,

Technical Advisor to the Minister of Planning and Development in charge of environmental issues and sustainable development.

Testimonials

"LEDS project, in its conception was for us, a great asset, a first approach in the implementation of the NDC, because it allowed us finally to decline our NDC in a concrete and well-structured project in the case of pilot project that has implemented in the rice sector. So for us, it's to see how we could decline our NDC into projects that could eventually be scaled up".

Dr Eric ASSAMOI,

Director of the fight against climate change

The EC-UNEP Africa LEDS project, provided us with the opportunity to understand how we can practically implement our NDCs in a way that lowers emissions and creates socioeconomic opportunities for our country. By this, it provides the full package of building climate resilience covering both socioeconomic & environmental/ climate aspects. We are going to build on the great outcomes we achieved to ensure that we implement climate actions within an informed policy trajectory that informs maximized investments – all thanks to the analytical tool and the practical case studies this project has helped develop for our country

Prof Joseph Séka SEKA,

Minister of the Environment and Sustainable Development

Conclusion

Capture whether work was concluded successfully and how it will be of benefit to the country in driving both NDCs implementation and the socioeconomic priorities – food security, income & job opportunities, creation of enterprises – and cumulatively drive realisation of the Sustainable Development Goals (SDGs).

 Complete QA among modeling tools
 Conduct scale-up of demonstration project to the national level

- Conduct additional capacity-building to transition from CCS Micro-analysis tool to LEAP for costs assessment
- Expand the number of modelling team members

Apply the integrated modeling system to other NDC policy options to strengthen capacity

THE AFRICA LOW EMISSIONS DEVELOPMENT STRATEGIES (AFRICA-LEDS) PROJECT

Thank You!

Dr. Alain Serges KOUADIO

